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a  b  s  t  r  a  c  t

The  congener  profile  of  samples  contaminated  with  dioxin  and  dioxin-like  compounds  allows  identifying
sources  of contamination.  This  article  studies  the  statistical  methods  of  congener  profile  analysis  reported
in  the  literature  with  respect  to the  reliability  of  obtained  results.  The  performance  of  customary  analysis
methods  regarding  raw  data  transformation  and  applied  TEF  (toxic  equivalency  factor)  values  is  discussed.
In particular,  the  method  of  principal  component  analysis  and  k-means  cluster  is  taken  as an  example  and
examined  in  detail.  Reasons  for occurring  inconsistencies  such  as  the  dependence  of  results  on  raw  data
eywords:
ioxin and dioxin-like compounds
ongener profiles
lustering algorithm
rinciple component analysis
ourt-proof

transformation  and  the  disregard  of measurement  uncertainty  are  described,  and  it  is shown  that  they
also  explain  inconsistencies  in  other  methods  of  cluster  analysis  such  as hierarchical  cluster  analysis  and
neural networks.  It  is  concluded  that  these  methods  cannot  be  employed  to reach  court-proof  decisions,
i.e.  decisions  which  meet  court  evidentiary  standards.  An alternative  approach  to analyzing  congener
profiles  based  on  mathematical  statistics  is  briefly  presented,  allowing  reliable,  court-proof  decisions.
alidity

. Introduction

Dioxin and dioxin-like compounds (DLC) represent a severe risk
o human health even at very low concentrations due to their
igh ability to accumulate in the organism and generate persis-
ent effects such as carcinogenicity or teratogenicity. The majority
f human DLC intake is from food of animal origin, e.g. meat, dairy
roducts and fish. Contamination of food is the result of contam-

nated feed and, in particular for wildlife fish, from contaminated
aters. Hence, food quality assurance necessitates the control of
aters [1–3], soil [4],  food [5–7] and feed [6,8].

DLC contaminated samples contain a mixture of dioxin and
ioxin-like congeners, exhibiting a broad range of toxicity and
ioaccumulation. To assess the risk to human health originating
rom a contaminated sample, the sum of toxic equivalents (TEQ)
f 17 hazardous dioxin and furan congeners is determined [9],  as
rst proposed by Eadon et al. [10]. Analyzed contaminated sam-
les may  vary in the concentration ratios of the congeners, i.e. they
xhibit different congener profiles. The congener profile allows to
dentify sources of contamination and to draw conclusions about
uman exposure. However, the customary methods to analyze con-

ener profiles based on multivariate statistics and neural networks,
uch as principal component analysis (PCA) and diverse clustering
ethods can only offer hints which cannot be verified due to lack

∗ Corresponding author. Tel.: +49 351 40288670; fax: +49 351 402886719.
E-mail address: uhlig@quodata.de (S. Uhlig).

021-9673/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2011.06.080
© 2011 Elsevier B.V. All rights reserved.

of proof or evidence. Therefore the question arises whether results
from clustering methods allow valid and court-proof decisions.
In order to provide valid, court-proof conclusions, the basis of a
method to analyze congener profiles should incorporate analytical
uncertainty prior to the application of statistical inference.

2. Results and discussion

2.1. The effect of raw data transformation on the results of
congener profile analysis

In the literature congener profiles are compared using PCA
[11,12] and clustering algorithms such as hierarchical cluster anal-
ysis [4],  k-means cluster or neural networks (e.g. Kohonen maps)
[2,3,13,14]. All these methods include an initial transformation of
raw data, i.e. the concentration of each congener from each sample
is transformed before analysis. For example, the original congener
concentration can be transformed into the ratio of the congener
TEQ to the overall TEQ of the sample. Upon closer examination, it
becomes clear that commonly used transformations are not uni-
formly used throughout the literature (e.g. compare [14] and [13])
and can only be justified phenomenologically.

In the present study we observe widely varying results from
clustering analysis, which are due to different data transformations

and to variations in the applied toxic equivalency factors (TEFs).
This feature is examined in detail for PCA and k-means cluster.

Fig. 1 and Table 1 summarize the raw data of 16 samples from
data of a study on sediment of a river. Using methods based on

dx.doi.org/10.1016/j.chroma.2011.06.080
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:uhlig@quodata.de
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Fig. 1. Upper panel: Congener profiles (data transformed into relative TEQ applying the actual WHO  TEF from 2005 [23]) of 16 samples from a study on sediment of a river.
The  statistically significant allocation of each sample to one of the two  clusters is indicated by different lines (black solid, gray solid), the two  outlier samples are depicted
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tatistical inference we were able to allocate the 16 samples into
wo sub-populations regarding their congener profile and to iden-
ify two outlier samples (combined in a third sub-population). The
btained sample allocation is quite reasonable as it separates sam-
les of downstream and upstream parts of the river into different
ub-populations. The two outlier samples can be explained by the
iffering method of sampling (out of an helicopter) for the sam-
le 324/I and by the geographical position of sample 678/II at
he estuary mouth. By calculating the uncertainty range of the
espective congener profile for each subpopulation and by deter-
ining the homogeneity within each sub-population, we are able

o ensure a statistically significant sample allocation (see [15]).
his approach was conducted by applying the web service hosted
t [16].

In contrast to our congener profile analysis based on statistical
nference, Table 2 presents the results of congener profile analysis
y means of PCA and clustering using k-means cluster exemplary

llustrated for one transformation in Fig. 2. PCA and k-means clus-
ering were performed using the statistical computing language
nd environment R (version 2.12.2). PCA itself is not a clustering
ethod but it provides plots (e.g. loading plots) which serve as a
urvey of the data and can possibly exhibit cluster structures. The
llocation of samples into sub-populations is achieved by k-means
luster (number of clusters = 3) after reducing the dimensions of
he dataset by PCA and the respective sample allocation is indi-
d the respective uncertainty range is shown, outlier samples are depicted as black

cated in Table 2. Different results of these methods are obtained
through application of different raw data transformations and of
different TEFs. Moreover, it should be noted, that repeated applica-
tion of the k-means cluster algorithm does not necessarily result
in equal sample allocation to sub-populations due to the initial
random choice of the cluster centers as a first step of the algo-
rithm. The method of congener profile analysis based on statistical
inference allows statistically verified allocation of samples to sub-
populations and identification of outliers, whereas the congener
profile analysis based on PCA and k-means cluster involves a dis-
tance determination disregarding any underlying uncertainty. The
decision about the assignment of two  samples, e.g. two  points in a
loading-plot obtained by PCA (similar to Fig. 2), to the same sub-
population is based on the distance of the corresponding points in
the plot. If their distance is small, it means that their transformed
raw data is very similar and in consequence they are regarded as
belonging to the same sub-population. Hence it immediately fol-
lows that the reason for different appearances of plots obtained
by different raw data transformations is the fact that actually the
transformed data is compared and not the raw data. However, for
evaluation of one plot the same “ruler” is used to measure the dis-

tances between all points, implying that transformed data of all
samples exhibit equal absolute errors. This assumption does not
hold true for real data irrespective of the applied transformation, a
fact reflected by the shape of the uncertainty ranges in Fig. 1 which
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are neither equally wide for each congener of one sub-population
profile nor equally wide for a certain congener throughout all sub-
populations. Hence the absolute errors in the transformed data are
inconsistent among congeners of one sample and between samples.
Consequently the two samples cannot be evaluated in one and the
same plot by the same “ruler”.

As a second example illustrating the high performance of con-
gener profile analysis based on statistical inference, a much larger
dataset of food fish from three different regions was  analyzed and
clustered. In this example, the second region is geographically
located between region 1 and 3. The results of the sample alloca-
tion using statistical inference are juxtaposed to sample allocations
resulting from PCA and k-means cluster in Table 3 by giving the
fraction of fish samples from a certain region in each cluster. Obvi-
ously, sample allocation based on statistical inference results in a
self-explanatory and reasonable regional clustering separating the
regions 1 (cluster 1 and 5) and region 3 (cluster 2) and allocat-
ing fish samples from the region in between those two throughout
clusters containing a small amount of samples from region 1 and 3
as well. In contrast to that, regional affiliation in clusters obtained
by PCA and k-means cluster appears rather random, i.e. the con-
gener profile clustering does not reflect the geographical origin of
the sample.

The conclusions of the different methods of congener profile
analysis are considerably different as summarized in Tables 2 and 3.

The method based on statistical inference identifies outliers and
sub-populations, whereas none of the PCA and k-means cluster
analyses allow equal conclusions as obtained by statistical infer-
ence. We  conclude that although PCA and k-means cluster is

Fig. 2. Exemplary results of PCA and k-means clustering: The PCA is applied to
the 16 samples resulting in a loading plot. The statistical significant allocation of
a  sample to a cluster is indicated by the respective marker (black circles and gray
circles for the two clusters, black open squares for outliers). The sample allocation
to sub-populations obtained by k-means cluster is indicated by surrounding ellipses
(cluster 1: gray dashed line, cluster 2: gray dotted line, cluster three: gray solid line).
The  plot presents the data transformation according to Hagenmaier et al. [24] calcu-
lating the congener TEQ relative to the sum of TEQ of the corresponding homologous
group in a sample. This transformation is highly dependent on the applied TEF values
due  to the non-uniform treatment of congeners. Data is shown for the current TEF
values according to the WHO  from 2005 [23]. Depending on the TEF values applied,
different appearances of the loading plots and different clustering by k-means clus-
ter are obtained (not shown). Especially for the often applied transformation shown
in  the plot a decision of division in gray circle and black circle sub-population is
not  possible. On the contrary, a pseudo-cluster containing 14 out of 16 samples is
formed.
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Table  2
Sample allocation of 16 samples of river sediment into sub-populations obtained by different methods of congener profile analysis: sub-populations are indicated by numbers,
outliers are indicated by “O”. Raw data transformation was  applied as follows: for sample allocation based on statistical inference the raw data was  transformed into congener
TEQ  relative to the overall TEQ of the sample, the same transformation applies for A, whereas for B the absolute congener TEQ was used. C, D, and E present data transformations
according to Hagenmaier et al. [24] calculating the congener TEQ relative to the sum of TEQ of the corresponding homologous group in a sample. This transformation is highly
dependent on the applied TEF values due to the non-uniform treatment of congeners. The applied TEF values are: current TEF values according to WHO  from 2005 [23] (C),
NATO  I-TEF from 1988 [25] (D) and values according to US EPA (1987) [26] (E).

Sample (kilometer marker/No.)

1/I 1/II 172/I 172/II 324/I 324/II 465/I 465/II 475/I 475/II 605/I 605/II 629/I 629/II 678/I 678/II

Statistical inference 1 1 1 1 O 2 2 2 2 2 2 2 2 2 2 O
k-means cluster algorithm
A 1 1 1 1 3 3 2 3 2 3 2 3 2 3 3 3
B 3 1  3 1 3 1 2 2 2 2 2 2 3 3 3 3

b
t
p
t
F
r
f

o
a
i
t
i
r
c
r
a
n

2
o

b

T
S
w
s
5

C 1  1 1 2 3 1 1 

D  1 1 1 2 3 1 1 

E  1 1 1 1 3 3 2 

ased on the same set of raw data, the data transformation leads
o considerable differences in the resulting assignation of sub-
opulations. Furthermore pseudo clusters for samples exhibiting
he same analytical systematic error can occur as can be seen in
ig. 2 and Table 2 (transformation C and D) where only one nar-
ow cluster including 14 out of 16 samples and two  outliers were
ound.

Similar effects as described for PCA and k-means cluster were
bserved for other clustering algorithms as well. Every cluster
nalysis algorithm requires a distance measure to evaluate the sim-
larity of objects with respect to the feature of interest (in our case
he congener profile). A prominent example for distance measures
s the Euclidian distance which, again, implies certain properties
egarding the absolute errors of transformed data. Thereby the
hoice of the distance measure in combination with the choice of
aw data transformation notably affects the results of the clustering
lgorithms, which even for the same set of transformed data does
ot necessarily yield in equal results.

.2. The relation between measurement uncertainty and validity

f decisions

The term validity used with respect to a decision reached on the
asis of data analysis describes the confidence, i.e. the probability

able 3
ample allocation into sub-populations obtained by different methods of congener profil
as  applied according to descriptions for Table 2. The sample allocation is given as fract

tatistical inference exclusively 100% of all fish from region 3 are allocated to cluster 2 an
.  A comparable result dividing geographically separated samples into clusters was not a

Cluster 1 Cluster 2 

Statistical Inference
Region 1 77% 5% 

Region 2 0% 40% 

Region  3 0% 100% 

PCA  and k-means algorithm

A
Region 1 0% 44% 

Region 2 20% 30% 

Region  3 29% 6% 

B
Region 1 0% 5% 

Region 2 20% 30% 

Region  3 12% 65% 

C
Region 1 5% 15% 

Region  2 30% 0% 

Region  3 65% 0% 

D
Region 1 0% 5% 

Region 2 20% 30% 

Region  3 12% 65% 

E
Region 1 0% 8% 

Region 2 30% 30% 

Region  3 29% 41% 
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
2 2 3 2 3 2 3 2 2

of the correctness of the decision. The contrary probability of error
is closely related to the measurement uncertainty of the underly-
ing data as illustrated in Fig. 3 for five hypothetical samples. The
black points may  represent the measured concentrations of a cer-
tain congener. The upper half in Fig. 3 displays a situation of low
measurement uncertainty where the true value of each measure-
ment is expected to lie in a narrow range around the measured
value (dashed and dotted black lines). The solid gray line is the
sum of all these five ranges and represents the probability of find-
ing any true value. The division of data into two  sub-populations
(dashed and dotted) is statistically significant as there exists an area
in between the two  sub-populations where the probability to find
any true value is very low (solid gray line). In that case the decision
to define two sub-populations is valid. In the situation of high mea-
surement uncertainty (lower half) the ranges of the expected true
values of each measurement are broad resulting in a considerable
overlap of dashed and dotted ranges. The same decision to divide
the samples into the two sub-populations (dashed and dotted) is
statistically not significant because there is no area in between
the two  sub-populations where a true value is expected with only

a low probability (solid gray line). This demonstrates that a sta-
tistically significant division of a population into sub-population
requires considering the underlying analytical uncertainty of
the data.

e analysis for food fish data from three different regions. Raw data transformation
ion of all fish samples originating from a region (1, 2 or 3), e.g. for clustering using
d more than 90% of all fish from region 1 are exclusively allocated to cluster 1 and

chieved by any of the PCA and k-means clustering approaches.

Cluster 3 Cluster 4 Cluster 5

0% 3% 15%
20% 40% 0%

0% 0% 0%

0% 0% 56%
0% 30% 20%
6% 41% 18%

15% 46% 33%
0% 10% 40%
0% 0% 24%

46% 33% 0%
10% 40% 20%

0% 24% 12%

33% 46% 15%
40% 10% 0%
24% 0% 0%

41% 28% 23%
0% 30% 10%
0% 18% 12%
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low measurement uncertainty

high measurement uncertainty

Fig. 3. Illustration of the relation between validity of a cluster analysis and mea-
surement uncertainty. The black points represent measured values, the dashed and
dotted black lines illustrate the ranges where the true value is expected to lie: in
case of low measurement uncertainty these ranges are narrow (upper half), in case
of  high measurement uncertainty these range are broad resulting in a considerable
overlap of dashed and dotted ranges. The solid gray line is the sum of all five ranges
and  represents the probability of finding any true value. The division of data into
two sub-populations (dashed and dotted) is statistically significant for the case pre-
sented in the upper half as there exists an area in between the two sub-populations
where the probability to find any true value is very low (solid gray line), whereas
it  is not statistically significant in the situation of high measurement uncertainty
(lower half) because there is no area in between the two sub-populations where a
true value is expected with only a low probability (solid gray line).
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[16] http://quodata.de/en/web-services.html, June 2011.
[17] L.A. Berrueta, R.M. Alonso-Salces, K. Héberger, J. Chromatogr. A 1158 (2007)

196.
Customary methods of analysis of congener profiles do not take
ny data related to measurement uncertainty into account. In terms
f the example in Fig. 3 this means that only transformed data rep-
esented as black points are obtained, but not the corresponding
anges of uncertainty (dashed and dotted black lines) which would
llow evaluation of the validity of the decision to divide the sam-
les into two sub-populations by means of the solid gray line. These
nalysis methods can therefore be termed exploratory. They are
seful to develop and formulate hypotheses, they can describe rela-
ions and may  lead to first explanations but they are not suitable
o test or confirm a hypothesis in contrast to methods of statisti-
al inference. Methods of statistical inference provide information
bout the probability of error, the measurement uncertainty and
he significance. Thus they allow verification of conclusions and
hereby court-proof decisions.

We  want to point out that there are a number of clustering
lgorithms yielding probabilities of affiliation to a cluster for each
bject instead of the assignment of each object to exactly one clus-
er. (An excellent review on a number of customary methods used
or food pattern recognition can be found in [17].) These proba-
ilities are based on the transformed data and the applied distance
easure whereas the actual measurement uncertainty is again dis-

egarded. Thus, the obtained affiliation probabilities must not be
onfused with the probability of error based on the measurement
ncertainty.

The analysis of congener profile can only lead to an impartial
llocation of the samples to sub-populations if the analyti-
al measurement uncertainty is considered, i.e. only samples
xhibiting congener profiles whose differences are statistically sig-
ificant with regard to the analytical measurement uncertainty
re assigned to different sub-populations. This connection between
alidity of a decision and measurement uncertainty is actually the
eason why determination of the measurement uncertainty of a

ertain analysis method is an essential requirement for accredited
est laboratories [18].

[

. A 1218 (2011) 5688– 5693

3.  Conclusions

The analysis of congener profiles of DLC contaminated samples
and the subsequent assignation of samples into sub-populations is
used to identify sources of contamination and human exposure ori-
gins. The sample allocations resulting from analysis methods based
on multivariate statistics or neural networks are highly dependent
on the applied raw data transformation and TEF values. Moreover,
none of the reviewed analysis methods takes the measurement
uncertainty into consideration and hence the probability of error
and the significance cannot be determined. Accordingly it is not
possible to evaluate the validity of cluster assignation. Resulting
decisions regarding sample allocation to different clusters should
therefore be seen as assumptions and not as valid, court-proof
results.

We want to emphasize the fact that the reviewed methods do
not meet the requirements stated in the international standard
ISO/IEC 17025 [18] for they do not consider measurement uncer-
tainty.

In order to provide valid, court-proof conclusions, the basis
of a method to analyze congener profiles has to be statistical
inference and include an analytically sound model of uncertainty.
The method described in [15] fulfills this requirement and allows
statistically significant statements regarding the sources or ori-
gins of congeners, e.g. the maximal percentage of contamination
in the sediment at a certain location which originates from a
defined area.

The application of methods based on statistical inference is
not only meaningful to analyze congener profiles of DLC con-
taminated samples, but these mathematical methods should also
be applied to similar profile or pattern analysis methods. For
example, rather than using PCA, methods according to Stachel
et al. [15] should be used in the investigation of human exposure
to polybrominated diphenyl ether (PBDE) congeners accord-
ing to She et al. [11], for fly ash analysis [19], and for food
analysis [17,20–22].
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